Denoising Monte Carlo Ray Tracing using Deep
Learning

Harry Chen
University of Toronto
harry7557558 @gmail.com

Abstract—We present a web-based tool that tackles a less-
done task: rendering mathematically defines shapes by physically
simulating light transport, and removing rendering noise using
a deep learning model, both in real-time. The renderer leverages
Monte Carlo path tracing, a physically based technique that
simulates light transport by tracing light paths and accumulating
weighted radiance estimates. The denoising model is a U-Net with
residual connections designed for both high quality and real-time
inference. The model is trained on noisy-clean image pairs by
minimizing a weighted sum of L1, L2, VGG perceptual, and
adversarial loss functions. Combining rendering and denoising,
we are able to achieve a frame rate up to 40fps at full
screen resolution. This demonstrates the possibility of real-time
rendering and deep learning model inference natively on the web,
as well as creating a tool that allows educators and amateur
artists to visualize mathematical surfaces. The tool can be found
under the following URL: https://spirulae.github.io/implicit3-rt.

I. INTRODUCTION

The synthesis of realistic images of virtual worlds is the pri-
mary driving force for the development of computer graphics
and ray tracing techniques to demonstrate a 3D space using a
2D image.

The most common ray tracing technique for realistic visual-
ization is Monte Carlo Path Tracing, which generates unbiased
estimates of radiance by simulating ray bouncing in random
directions using various Monte Carlo sampling techniques to
reduce variance. However, Monte Carlo Path Tracing often
comes with noise and high processing time for a clear image.
Yet, introducing denoising models such as U-Net and ResNet
allows Monte Carlo Path Tracing to operate effectively and
produce clearer images.

Motivated by this problem, this article demonstrates de-
noising models comparison between ResNet, UNet, Residual
UNet, GAN, and Improved GAN with auxiliary buffers imple-
mented on a self-built 3D Math function plotter. With a pursuit
of education purposes and enhancing people’s accessibility to
a ready-to-use 3D math plotter or ray tracing platform, the 3D
Math Function plotter allows users to access ray tracing on
multiple platforms(mobiles, computers, etc.) via a website.

A. Motivation

Image denoising is traditionally achieved through signal
filtering techniques like the well-known Gaussian filtering, as
well as improvements such as bilateral filtering, which are
fast but often blur edges without removing noise completely.
One of the earliest deep-learning works developed for CGI

Jeffrey Ming Han Li
University of Toronto
jeffreymh.li @mail.utoronto.ca

production-level denoising was KPCN. [Bako et al., 2017]
However, its kernel prediction mechanism requires a substan-
tial model size, which renders it impractical for real-time
applications. An advancement in denoising is the introduction
of the DEMC model [Yang et al., 2019] that leverages a U-
net architecture for enhanced speed, as well as incorporating
preprocessing as gamma transforms and integrating renderer
outputs such as albedo and normal. [Alsaiari et al., 2019] em-
ploys a weighted sum of L1, VGG perceptual, noise reduction,
and adversarial loss functions for model training, which show
high generalizability of small models but face challenge of
GAN color shifts. Intel Open Image Denoise (OIDN) [Afra,
2024] is a popular software for real-time ray tracing denoising
applications. While lacking elaborate features other than a
plain U-Net, OIDN targets real-time speed. However, it has
limited platform support due to its highly low-level inference
implementation.

B. Problem Definition

The most common issue faced by Monte Carlo Path Tracing
is the noise and high processing time for a clear image.
Therefore, to tackle this problem, the objectives are to remove
rendering noise without blurring edges and losing fine details,
keeping the overall color of the images by using a small
denoising model at high inference speed on the web. The
denoising model is also expected to output a clean image of
the same dimension by inputting a noisy image and including
auxiliary buffers for better image quality.

II. RELATED WORK

Until the late 2010s, Monte Carlo path tracing has largely
been based on Veach’s Ph.D. thesis [Veach, 1998]] written in
the late 90s, which generates unbiased estimates of radiance
by simulating ray bouncing in random directions, with various
sampling techniques to reduce variance. While techniques
developed in the past years (notably [Ouyang et al., 2021]))
demonstrate rapid convergence in extreme edge cases, classical
Monte Carlo path tracing is suitable enough for our project.
Regardless of the development of path tracing, physically
rendering mathematically defined shapes in web browsers is
a very less explored area in both engineering and academia.
The closest work we find is shaders shared on Shadertoy
[Beautypi (Inigo Quilez and Pol Jeremias), ||, a web-based
platform that allows amateur users to create WebGL fragment

https://spirulae.github.io/implicit3-rt

e=T(e+3)
z=Tm()
s = (arg (c), 1,1)

—

Fig. 1. Screenshots of our demo, showing various capabilities: Support for variable/function definition, complex numbers, and custom color; Simulating
diffuse, glazed, metallic, and refractive surfaces; Simulating fog, camera out-of-focus blur, and sky lighting; Image denoising using our models. All these
examples run within web browser and can be selected from the set of examples.

Denoising Model

|

‘ A—»Q‘ » "

Nonlin Map | » B » Inverse Nonlin Map ﬁOutpu’L
-»
3
2R 1 d = » 2R 1 3
B 3*3Conv+Relu @reeenerenns [- - P >
. 35 6 1616 16 x
=) 1*1 Conv +Relu A . S o 2a 2 g
§eereerens » ¥ I geeeriiiaiann
=™ Maxpool ax P > i

B 4*4 Deconv, Stride 2

Fig. 2. Our Residual U-Net with GAN and Combined Loss

shaders, which makes path tracing possible but is unintuitive
since users need to write code.

Image denoising is traditionally achieved through signal
filtering techniques like the well-known Gaussian filtering, as
well as improvements such as bilateral filtering, which are
fast but often blur edges without removing noise completely.
One of the earliest deep-learning works developed for CGI
production level denoising was KPCN. [Bako et al., 2017]
However, its kernel prediction mechanism requires substantial
model size, which renders it impractical for real-time appli-
cations. An advancement in denoising is the introduction of
the DEMC [Yang et al., 2019] model that leverages an U-
net architecture for enhanced speed, as well as incorporating
preprocessing like gamma transforms and integrating renderer
outputs such as albedo and normal.

[Alsaiari et al., 2019] employs a weighted sum of L1, VGG
perceptual, noise reduction, and adversarial loss functions for
model training, which show high generalizability of small
models but faces challenge of GAN color shifts. Intel Open
Image Denoise (OIDN) is a popular software
for real-time ray tracing denoising applications. While lacking
elaborate features other than a plain U-Net, OIDN targets real-
time speed. However, it has limited platform support due to
its highly low-level inference implementation.

III. METHODOLOGY

Our software consists of a web user interface, where the
equation input by the user is parsed and converted into shader
source, with optimization using dynamic programming. Both
shader source and path tracing code are compiled as a single
WebGL fragment shader. With renderer parameters (such
as random number seeds and parameters controlling surface
appearance, lighting, and camera) passed to the shader as
WebGL uniform variables, at each pixel, the shader computes
an unbiased radiance estimate, which is averaged to produce
a noisy image. The denoiser takes the noisy image and
inferences the denoising model to produce a clean image,
which is displayed on the screen.

The denoising model is mainly a U-Net. An U-Net is similar
to an image encoder-decoder model, but with connections
between encoder and decoder. The input image is first down-
scaled through convolutional and pooling layers with increas-
ing depth, then upscaled through transposed convolutional
layers, with the downscale part connected to the upscale part
through concatenation to prevent loss of information. Finally,
there are two residual connections before producing the output
image. The model is trained by minimizing a weighted sum of
L1, L2, VGG perceptual, and adversarial (GAN) loss functions
[Alsaiari et al., 2019]. We also added an original loss function
to correct color shift by matching the global mean of pixels
before and after denoising.

Denoising Model i -
g Auxilliary Buffers Encoder
LK | -»
.= (e |« B
A Ny, ..
¥ - L Auxiliary Buffer Auxiliary Buffers
Noisy RGB penoised Image 8 8" 8 , Albedo(4), Nomarl(3)
Auxillary Buffers Processing Layer
= 33 Conv +Relu
2 - » » » » »
= 3*3 Conv, Stride 2 + Relu o)
« 3*3 Deconv, Stride 2 1 ol 1 ‘,____1’6 1/8x
8 "1x @:oh 1/4x
.. A LR Bt ol 1/‘in
Image Decoder
v
N A
IR 4 - e« e« | e @ « | |« @ i
Inverse Nonlinear 16 20 2
24
Output Map I3 12 8 1212 12 12 1616T16 o4 T 24
‘,
ﬁ - / (\\ - - » = b4 = » il * -
Nonlinear Map 32 32
Input RGB 24 YRR SRCIIIs »
16 16 - s
3 12 12 @ > U8X RGB Encoder
L TTTTPPPPPPPIPPPPRN > 1/2x 1/4x

Fig. 3. Our Attention U-Net with Auxiliary Buffer Input

Discriminator Model

(o]~ (% »| »[0»

32
1/4x

48
1/8x

24
16 1/2x
1x
» 4*4 Conv, Stride 2 + BatchNorm + LeakyRelu
L3 3+3 Conv, Stride 1

Sigmoid

— Real/Fake

—

=

64
1/16x

=

1
1/16x

Average

64
1/16x

Loss Functions: L1, L2,
VGG Perceptual, Drift Correctiod

Fig. 4. Our discriminator, used for training of both models

Since our project focuses on inference speed rather than
existing large models for offline rendering, it took experimen-
tation for us to create a model to fit our needs. We initially
started with a deep residual network (ResNet), which was
proven too slow, so we moved to a U-Net that allows allocating
more model parameters into encoder-decoder “bottleneck” to
speed up inference with equal quality. After experiencing
image blurring and color shift issues, we added residual
connections to the U-Net (ResUNet), which empirically im-
proved generalizability to rare colors and resulted in faster
convergence in the early training stage. Introducing GAN
significantly improved the model’s ability to capture fine
details but introduced additional color shifts, and therefore we
introduced an additional loss function to correct it.

IV. RESULTS AND DISCUSSION

As shown in Table 1, the quality of the noisy image is
significantly improved by implementing denoising models.
ResNet fails to remove noise completely. U-Net blurs feature

the most for its stacked convolutional layers, and ResUNet
creates clearer images by adding residual connections to the U-
Net structure. Overall, ResUNet trained with the GAN model
approaches the ground truth images the most when judged by
human eyes.

We test the performance of the ResUNet + GAN model
in our web-based path tracer, on a laptop equipped with a
NVIDIA RTX 3070 GPU. The frame rate is obtained through
WebGL timer query supported by Google Chrome. For the de-
fault ”Red Flower” scene, at 1920x1080 resolution, it renders
at 48fps without denoising and 17fps with denoising, while
at 1024x768 resolution, the numbers are respectively 95fps
and 42fps. For the “Fractal Sponge” scene, which involves
complex geometry and indirect lighting, the scene renders at
12fps and 10fps without and with denoising, demonstrating a
neglectable impact of denoising on rendering speed.

Image 2: Noisy

Ifnage 6: ResUNet + GAN

TABLE I
COMPARISON OF SOME OF OUR MODELS

Iﬁlage 5: ResUNet

A. Ethical Considerations

Since the renderer is only capable of rendering mathematical
shapes for hobbies and educational purpose, it is unlikely that
it can cause unwanted ethical issues. The denoiser, however,
can be used for a variety of denoising tasks not limited to
mathematical shapes. When applied on images containing
identifying information like faces and car plate numbers, it
is important for the model to be accurate to avoid harm from
misidentification.

B. Replication Package

For main development repository containing renderer code

itory. Scripts that train denoising models can be found under
the |Graphics| repository.

V. CONCLUSION

Through the creation of this tool, we demonstrate the possi-
bility of real-time rendering and deep learning model inference
natively on the web, which is something very less-done before.
Released freely and accessibly, the tool allows educators
and amateur artists to visualize mathematical surfaces with

exceptionally high visual quality without need for expensive
software.

VI. FUTURE WORK

The rendering parts of our project have been largely func-
tional, but the denoising part still has a large room for improve-
ment. On the engineering side, we need an implementation for
optimized inference speed: the model is currently inference
with WebGL and JavaScript written from scratch since third-
party solutions we explored (onnx.js, WebDNN, ShaderNN,
etc.) are either incompatible or lack an efficient interface with
our WebGL renderer. On the academic side, we are still in the
process of experimenting with more models for higher speed
and performance, which may include auxiliary buffer fusion,
squeeze-excitation modules, attention mechanisms, etc.

VII. LIMITATIONS

Currently, the demo runs very slow and crashes frequently
on devices without a dedicated graphics card, which breaches
our compatibility objective. The tool also struggles to handle
auxiliary buffers in the presense of camera out-of-focus blur
and fog, which makes it less usable to complex scenes.

VIII. ACKNOWLEDGEMENTS

We appereciate University of Toronto Machine Intelligence
Student Team (UTMIST), and University of Toronto Engi-
neering Society for supporting this research with workshops
and funding. We also thank the CUCALI team for providing an
opportunity for the showcasing our project.

REFERENCES

[Afra, 2024] Afra, A. T. (2024). Intel® Open Image Denoise. https://www.
openimagedenoise.org.

[Alsaiari et al., 2019] Alsaiari, A., Rustagi, R., Thomas, M. M., and Forbes,
A. G. (2019). Image denoising using a generative adversarial network. In
Proceedings of the IEEE 2nd International Conference on Information and
Computer Technologies, pages 126—132.

[Bako et al., 2017] Bako, S., Vogels, T., Mcwilliams, B., Meyer, M., Novék,
J., Harvill, A., Sen, P., Derose, T., and Rousselle, F. (2017). Kernel-
predicting convolutional networks for denoising monte carlo renderings.
ACM Transactions on Graphics, 36(4):97:1-97:14.

[Beautypi (Inigo Quilez and Pol Jeremias),] Beautypi (Inigo Quilez and Pol
Jeremias). Shadertoy. Very special thanks to Activision, Reinder Nijhoff,
Patrick Labatut, Henrique Lorenzi, Otavio Good, Philip Wagner, Yanling
He, Juan A. Martinez (stage7), Mari Miyashita, Nikochan, Sara Goepfert,
Jose Manuel Perez (JosSs), Teresa, Sara (Gizma), Brett (AudEo Flow),
Dave Hoskins, Osama Mahmood, Joan Perez, Kamran Saifullah, Chintu
Solanki, Eduardo (@debsecurity).

[Ouyang et al., 2021] Ouyang, Y., Liu, S., Kettunen, M., Pharr, M., and Pantale-

oni, J. (2021). Restir gi: Path resampling for real-time path tracing. Computer
Graphics Forum (Proceedings of High Performance Graphics).

and inference engine can be found under the [spirulae repos- [Veach, 1998] Veach, E. (1998). Robust Monte Carlo methods for light transport

simulation. PhD thesis, Stanford University, 408 Panama Mall, Suite 217,
Stanford, CA, United States. Adviser: Leonidas J. Guibas.

[Yang et al., 2019] Yang, X., Hu, W., Wang, D., Zhao, L., Yin, B., Zhang,

Q., Wei, X., and Fu, H. (2019). Demc: A deep dual-encoder network
for denoising monte carlo rendering. Journal of Computer Science and
Technology, 34(5):1123—-1135. Published in Journal of Computer Science
and Technology. The final publication is available at http://link.springer.com/
article/10.1007/s11390-019-1964-2!

https://github.com/harry7557558/spirulae
https://github.com/harry7557558/Graphics
https://www.openimagedenoise.org
https://www.openimagedenoise.org
http://link.springer.com/article/10.1007/s11390-019-1964-2
http://link.springer.com/article/10.1007/s11390-019-1964-2

	Introduction
	Motivation
	Problem Definition

	Related Work
	Methodology
	Results and Discussion
	Ethical Considerations
	Replication Package

	Conclusion
	Future Work
	Limitations
	Acknowledgements
	References

