

Why Path Tracing and Denoising

Ray tracing

Model Architecture and Training

Implementation and Results

Demo Available

Denoising CGI Renderings using Deep Learning
Harry Chen, Jeffrey Li, Victor Deng, Daniel Chua, Justin Wu, Sijie Han,

Muhammad Ahsan Kaleem, Richard Huang, Rick Lin, Jack Chen

Path tracing, a physically-based rendering technique, can generate high-quality
CGI images, but it produces unwanted noise before convergence. Recently,
deep learning methods are used to remove noise, speed up rendering while
improve image fidelity.

Config FPS
Flower, denoise 42
Flower, no denoise 95
Sponge, denoise 10
Sponge, no denoise 12

Path tracing, 1 spp

Path tracing, denoised

Path Tracing is a quality rendering technique
that physically simulates light transport.

Path tracing naturally handles:

● 🧊 Glossy reflection and Refraction
● 🌓 Soft shadow and Ambient occlusion
● 🎥 Depth of field and Lens distortion
● 🌁 Translucency and Fog/Smoke
● ... More!

However, the stochastic nature of path
tracing produces noise across pixels, which
reduces image fidelity. Reducing noise
traditionally requires a large number of
computationally expensive samples.

Examples of path-traced images in our
rendering engine, demonstrating
refraction, fog, and depth of field

Path tracing with 1, 16, 256 samples
per pixel (spp)
Christensen et al., "The Path to Path-Traced Movies," Oct. 2016.

For the denoising task, we choose a U-Net CNN model with very few parameters that is suitable for real-time
inference. A nonlinear mapping is applied to input and output of the model to handle high dynamic range pixels.
The model is trained adversarially by trying to cheat a discriminator model, allowing capturing fine visual details.

Loss function: weighted sum of losses

● L1: for accurate pixel color
● L2: prevents large pixel deviation
● Perceptual: evaluated with

pre-trained VGG, mimics human
visual perception

● Adversarial: evaluated using a
discriminator, encourages fine details

● Drift correction: large loss between
averaged pixel values, reduce color
drift caused by adversarial loss

Training data: 129 scenes from our rendering engine

● Each scene contains independent renders with power-of-2 sample counts until convergence
● Image with arbitrary sample count can be synthesized with a weighted sum of renders

Denoising Model

Discriminator Model

Our project involves developing a rendering engine along
with the denoising model. We focus on the following
objectives in our design and implementation:

● 🔥 Performance: We tried to achieve real-time speed.
For speed we fully fused denoising into rendering
pipeline. We minimized dependency in our code.

● 💎 Uniqueness: Our demo runs completely inside a
web browser. We render mathematical shapes—the
raymarching algorithm is capable of performing
intersection for arbitrary implicit surfaces.

● 🤩 Impression: we aim to produce stunning visuals, and
we made the demo compatible with desktop and
mobile devices. We highlight path tracing features like
refraction and depth of field.

● 💡 Educational: By rendering user-input mathematical
equations, the demo demonstrates mathematical
capability to produce visual art. We open-source our
demo and provide documentation.

Quantitative Results (1024×768, NVIDIA RTX 3070, 1 spp)

Our implementation runs at 42 fps for the flower scene with denoising,
and 95 fps without. For the sponge scene, which involved complex
geometry and indirect lighting, it runs 10 fps with denoising and 12 fps
without, where the slowdown of denoising becomes minimal.

Training with adversarial loss (GAN)
allows recovering fine details

noisy (1 spp) converged

without GAN with GAN

Result Gallery

↓
Converged/

Denoised

